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Rapid Note

Hall Conductivity in the presence of repulsive magnetic impurities
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Abstract. The Hall conductivity of disordered magnetic systems consisting of hard-core point vortices
randomly dropped on the plane with a Poissonian distribution, has a behavior analogous to the one
observed experimentally by Haug, Gerhardts, Klitzling and Ploog, with repulsive scatterers [1]. We also
argue that models of homogeneous magnetic field with disordered potential, have necessarily vanishing
Hall conductivities when their Hilbert space is restricted to a given Landau level subspace.

PACS. 05.30.-d Quantum statistical mechanics – 05.40.+j Fluctuation phenomena, random processes,
and Brownian motion – 11.10.-z Field theory

It is commonly believed [2] that in quantum Hall de-
vices disorder plays a crucial role in the understanding
of plateaus for the Hall conductivity as a function of 1/B
or N(EF ), the number of electrons, at integer (or frac-
tional) values in units of e2/h. For an homogeneous B
field, the linear response of the system to a small electric
field gives no hint of such a remarkable behavior since all
the states are delocalized and have the same transverse
conductivity which varies linearly with 1/B or N(EF )
(classical straight line). Disorder is needed to explain why
some states (in fact most of them) are localized in broad-
ened Landau levels, thus the plateaus in the Hall conduc-
tivity, around the classical line. However, Haug et al. [1]
reported the experimental observation of a shifted quan-
tized Hall conductivity with respect to the classical line,
when attractive or repulsive scaterrers are considered in
the Hall sample. The data – Hall conductivity versus the
filling factor – are shifted to the left when the scaterrers
are repulsive, and to the right when they are attractive.
The authors in [1] were able to reproduce qualitatively
these shifts within a self-consistent T -matrix approxima-
tion computation. They also argued that two-dimensional
disordered δ repulsive models projected in the lowest Lan-
dau level (LLL) of an external magnetic field [3], which ex-
hibit an asymmetrically disorder induced broadened LLL,
indeed favour this phenomenon. The root of the under-
standing lies in the fact that conducting states are not
located anymore at the center of a symmetrically broad-
ened Landau level, as it is the case for neutral scatterers,
but in one side or the other of the now asymmetric density
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of states (DOS). On the theoretical side on the other hand,
the question was asked in [3] about the way to compute
exactly the average LLL Hall conductivity.

In the following, we study a model where the disorder
is contained in the definition of the magnetic field itself.
We consider [4] a gas of electrons coupled to hard-core
point vortices, hereafter called magnetic impurities, car-
rying a flux φ = αφo (φo = h/e is the quantum flux) and
randomly dropped on the plane according to a Poisson
distribution, with Hamiltonian (in units me = ~ = 1)

H =
1

2
(p− eA(r))2 − σz

e

2
B(r). (1)

The Aharonov-Bohm vector potential eA(r) =

α
∑
i

k×(r−ri)
|r−ri|2

and the magnetic field B(r) = φ
∑
i δ(r−ri)

depend on the configuration of the random positions ri
of the impurities. It is always possible to take α ∈ [0, 1/2]
because of the periodicity of period 1 in α and of the
symmetry α→ −α. The spin assignation in (1) is needed
to define in a non ambiguous way the model at hand. We
choose σz = −1 which yields a short distance regular-
ization for the impurities such that they are hard-core.
It was shown in [4] that two distinct spectral behaviors
for the average DOS occur when α varies from α = 1/2
(i.e. big flux) and α ' 0. When α is big, the electrons
see the impurities individually, a maximum disordered
situation with a free DOS but a depletion of states at
the origin of the spectrum. In contrast, for small value of
α, the inhomogeneities of the disordered magnetic field
are less relevant, therefore a Landau like average DOS,
with Landau oscillations, i.e. Landau levels separated
by a mean Landau gap e 〈B〉 and broadened by disorder
(〈B〉 = ρφ is the mean magnetic field through the plane,
ρ is the mean impurity density – if ρ is taken to be of the



528 The European Physical Journal B

order of the density of current carriers ρ = 4× 1015 m−2,
one obtains, for α = 1/2, a mean magnetic field precisely
in the experimental range of the Quantum Hall Effect
〈B〉 ' 10 T). Thus, in the small α limit, the random
magnetic impurity model has the required properties,
i.e. an average magnetic field with disorder induced
broadened Landau levels, to induce localization and
eventually a quantized Hall conductivity.

The non unitary transformation (〈ωc〉 = e 〈B〉 /2)

ψ = e−
1
2 〈ωc〉r

2
N∏
i=1

|r− ri|
α ψ̃′ (2)

leads to the equivalent Hamiltonian

H̃ ′ =
1

2
Π
〈L〉
+ Π

〈L〉
− − iα (Ω − 〈Ω〉)Π〈L〉− (3)

where Ω =
∑
i

1
z̄−z̄i

, and Π
〈L〉
+ and Π

〈L〉
− are the covari-

ant Landau operators for the mean magnetic field. The
Hamiltonian (3) has the simple structure of a Landau
Hamiltonian for the mean magnetic field plus a disordered
potential. One might consider that the Hall conductivity
computation could be simplified if the mean magnetic field
is sufficiently strong so that one can neglect couplings be-
tween Landau levels, or, more drastically, retain only the
LLL. Remarkably enough [5], the Hamiltonian (3), when
projected in the LLL of the mean magnetic field, precisely
yields the repulsive δ impurity Hamiltonian [3] in the LLL
of the mean magnetic field

H = H〈LLL〉 + λ
∑

δ(r− ri) (4)

with λ = 2πα. So the question: What is the average Hall
conductivity for the LLL Hamiltonian (4) and, more gen-
erally, for Hamiltonians of the type H = HL+V (r), where
V (r) is a disordered potential, when H is restricted to the
Hilbert space of a given Landau level of HL? The answer
is: in the linear response formalism, such a conductivity
vanishes, implying that a non vanishing conductivity nec-
essarily arises from couplings between different Landau
levels. We insist here that restricting the Hilbert space
to a given landau level and computing the conductivity
in this given subspace should not be confused with the
problem of evaluating the contribution of a given Landau
level to the total conductivity. The Hamiltonian restricted
to the nth Landau level is H(n) = EnPn + PnV Pn with
En = 2ωc(n+ 1/2) and Pn the energy and the projection
operator of the nth Landau level

Pn(z, z′)
def
= 〈z |Pn|z

′ 〉 =
ωc

π
Ln(ωc|z − z

′|2)

× e−
1
2ωc(|z−z

′|2−zz̄′+z̄z′)

and ΠL
+Pn = (1 − δn,0)Pn−1Π

L
+ (accordingly PnΠ

L
− =

(1−δn,0)ΠL
−Pn−1). The complex thermalized conductivity

for one electron σ−β (t) ≡ σxx(t)− iσyx(t) rewrites as [6]

σ
−(n)
β (t) = θ(t)

ie2

2V Z
(n)
β

∫
dz dz̄ dz′ dz̄′

×
(
G

(n)
β−it(z

′, z)ΠL
−G

(n)
it (z, z′) z′ − (it→ β + it)

)
(5)

Fig. 1. Hall conductivity in unit of e2/h of the random mag-
netic impurity model at first order in α for α = 0.01 as a
function of the filling factor ν = Nh/V e 〈B〉; straight line =
classical result, full line = perturbative result.

where θ(t) is the Heaviside function.

The propagator G
(n)
β (z, z′) for H(n) is by definition

G
(n)
β (z, z′) = 〈z |Pne

−βH(n)

|z′ 〉. (6)

The operator ΠL
− in (5) happens to be flanked by two pro-

jectors. Since PnΠ
L
−Pn = 0, then necessarily σ

−(n)
β (t) = 0,

implying that the Hall conductivity for a gas of non in-
teracting electrons vanishes as well when restricted to a
given Landau level.

It follows that the full Hamiltonian (3) is needed to
get a non trivial information on the conductivity. First
order perturbation theory (Fig. 1) gives a behavior for
the Hall conductivity [6] which is quite reminiscent of the
experimental data in [1] for repulsive scatterers. Of course
we do not pretend to describe precisely this particular
experimental situation. Still, we would like to emphasize
that an enhancement of the Hall conductivity does appear
in the presence of repulsive magnetic impurities, and that
this phenomenon can be obtained only if all Landau levels
are considered.
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